Src-dependent, neutrophil-mediated vascular hyperpermeability and -catenin modification

نویسندگان

  • JOHN H. TINSLEY
  • ELENA E. USTINOVA
  • WENJUAN XU
  • Elena E. Ustinova
  • Wenjuan Xu
چکیده

Tinsley, John H., Elena E. Ustinova, Wenjuan Xu, and Sarah Y. Yuan. Src-dependent, neutrophil-mediated vascular hyperpermeability and -catenin modification. Am J Physiol Cell Physiol 283: C1745–C1751, 2002. First published July 24, 2002; 10.1152/ajpcell.00230.2002.—The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in albumin permeability caused by C5a-activated neutrophils in intact, perfused coronary venules, as well as in cultured endothelial monolayers. Activated neutrophils increased Src phosphorylation at Tyr416, which is located in the catalytic domain, and decreased phosphorylation at Tyr527 near the carboxyl terminus, events consistent with reports that phosphorylating and transforming activities of Src are upregulated by Tyr416 phosphorylation and negatively regulated by Tyr527 phosphorylation. Furthermore, neutrophil stimulation resulted in association of Src with the endothelial junction protein -catenin and -catenin tyrosine phosphorylation. These phenomena were abolished by blockage of Src activity. Taken together, our studies link for the first time neutrophil-induced hyperpermeability to a pathway involving Src kinase activation, Src/ -catenin association, and -catenin tyrosine phosphorylation in the microvascular endothelium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Src-dependent, neutrophil-mediated vascular hyperpermeability and beta-catenin modification.

The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in alb...

متن کامل

Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability.

Endothelial hyperperme ability leading to vascular leak is an important consequence of sepsis and sepsis-induced lung injury. We previously reported that heat shock protein (hsp) 90 inhibitor pretreatment improved pulmonary barrier dysfunction in a murine model of sepsis-induced lung injury. We now examine the effects of hsp90 inhibitors on LPS-mediated endothelial hyperpermeability, as reflect...

متن کامل

Intercellular adhesion molecule-1-dependent neutrophil adhesion to endothelial cells induces caveolae-mediated pulmonary vascular hyperpermeability.

We investigated the role of caveolae in the mechanism of increased pulmonary vascular permeability and edema formation induced by the activation of polymorphonuclear neutrophils (PMNs). We observed that the increase in lung vascular permeability induced by the activation of PMNs required caveolin-1, the caveolae scaffold protein. The permeability increase induced by PMN activation was blocked i...

متن کامل

Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation.

BACKGROUND Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to T...

متن کامل

Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways.

RATIONALE Oxidants are important signaling molecules known to increase endothelial permeability, although the mechanisms underlying permeability regulation are not clear. OBJECTIVE To define the role of caveolin-1 in the mechanism of oxidant-induced pulmonary vascular hyperpermeability and edema formation. METHODS AND RESULTS Using genetic approaches, we show that phosphorylation of caveoli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002